Sie sind hier:

Anbieter

Besondere Welt

Buntes

Events

Fachbücher

Firmenadressen

Gastkommentare

Gedanken zur Zeit

Goodies

Interviews

Kaufmannswelt

Messeunterkünfte

Stellenbörse

Technische Museen

Lernen

Blender

CAD_CAM

CNC-Technik

Elektronik

Mathematik

Office & mehr

Steuerungstechnik

Turbo CAD

Z88 (FEM)

VIP

Suchen nach:

Allgemein:

Startseite

Datenschutz

Impressum

Kontakt

Anzeige


Seit drei Generationen setzt die HEDELIUS Maschinenfabrik Maßstäbe in der Zerspanung. Ideenreichtum, Kundennähe und kompromisslose Qualität sind das Erfolgsrezept des Unternehmens.






Interessante Artikel früherer Ausgaben






Anzeige


HURCO Companies Inc. entwickelt und fertigt interaktive Computersteuerungen, Software sowie computergestützte Werkzeugmaschinen und –komponenten für die kundenbezogene Einzel- und Kleinserienfertigung.






Nähere Infos zu...

Archi Crypt Behringer Blum Boschert Diebold Emuge Esta Euroimmun Evotech GF Machining Solutions Hedelius Horn Hurco Hydropneu Identsmart Index Klingelnberg Liebherr Mazak Mechoniks Raziol Rollon Supfina SW Tox Vogt Ultrasonics Völkel Weiss Rundschleiftechnik Zecha






Anzeige


Die Klingelnberg Gruppe ist weltweit führend in der Entwicklung und Fertigung von Maschinen zur Kegelrad- und Stirnradbearbeitung, Präzisionsmesszentren für Verzahnungen und rotationssymmetrische Bauteile sowie in der Fertigung hochpräziser Komponenten für die Antriebstechnik im Kundenauftrag.






Die Welt des Kaufmanns






Anzeige


GF Machining Solutions ist ein weltweit führender Anbieter von Maschinen, Automationslösungen und Serviceleistungen für den Formen- und Werkzeugbau sowie für die Fertigung von Präzisionsteilen.






Die VBA-Welt






Die 3D-Welt von Blender






Anzeige


Evo Tech Laser konstruiert und produziert in Deutschland modernste Laserbeschriftungsanlagen und Gravursysteme für die Beschriftung von Metallen und vielen anderen Laser-geeigneten Werkstoffen. In diesem Bereich ist das Unternehmen einer der innovativ führenden Hersteller.






Anzeige


Das Kerngeschäft der Paul Horn GmbH ist die Bearbeitung zwischen zwei Flanken – Schwerpunkt Einstechen – sowie von weiteren, hochtechnologischen Anwendungen, verbunden mit Kundennähe, hoher Produktqualität, Beratungskompetenz und Lieferbereitschaft.






Die Welt der Geometrie







Die Welt der Elektronik







Die bunte Welt






Anzeige


Supfina Grieshaber besitzt langjährige Erfahrung auf dem Gebiet der Superfinish-Bearbeitung mit Stein- und Bandwerkzeugen. In Verbindung mit dem Wissen über vor- und nachgelagerte Prozesse bietet das Unternehmen praxisorientierte Lösungen.






Die besondere Welt






Anzeige


Die Index-Gruppe zählt mit ihren Marken ›Index‹ und ›Traub‹ zu den weltweit führenden Herstellern von CNC-Drehmaschinen. Mit sechs Produktionsstandorten und fünf internationalen Vertriebs- und Servicegesellschaften sowie 80 Vertretungen ist die Esslinger Unternehmensgruppe weltweit vertreten.






Die Welt der Goodies


Additive Fertigung


Automation


Blechbearbeitung


CAD


Entsorgung


Gewindeherstellung


Handwerkzeuge


Kennzeichnen


Lasertechnik


Logistik


Maschinenbau


Messtechnik


Schleiftechnik


Schweißtechnik


Sicherheitstechnik


Spannmittel


Steuerungen


Tribologie


Wasserstrahltechnik


Zahnradfertigung


Sonstiges






Die Welt der Events






Anzeige


Die Dr. Erich TRETTER GmbH + Co. mit Sitz in Rechberghausen liefert seit über 45 Jahren Maschinenelemente für alle Bereiche des Sondermaschinenbaus. Dazu gehören Linearsysteme, Kugelbuchsen, Wellen, Kugelgewindetriebe, Kugelrollen oder Toleranzhülsen.






Anzeige


ESTA ist einer der führenden Hersteller von Absaugtechnik. Mit Sitz im bayerischen Senden bei Neu-Ulm vertreibt das Familienunternehmen sein umfangreiches Entstauber- und Anlagensortiment mit eigenen Niederlassungen und Vertriebspartnern weltweit.






Die Welt der Erfindungen

Hier bieten Erfinder Rechte oder Lizenzen für interessante Produkte an. Reinschauen lohnt sich!







Die Welt aus Professorensicht

An dieser Stelle wird sich in unregelmäßigen Zeitabständen ein anonym bleibender Professor äußern. Er wird intime Einblicke in ein absurdes Lehrsystem geben, das sich als leistungsfeindlich und ungerecht outet.







Anzeige


Leistungsstarke Sägemaschinen zur Metallbearbeitung sind das Markenzeichen der weltweit tätigen Behringer GmbH. Die Produktpalette umfasst Band-, Kreis- und Bügelsägen sowie Automatisierungskomponenten aus dem hauseigenen Stahlbau.






Die Welt der Reisenden

Ob Urlaub, Messebesuch oder Reportage, es gibt viele Gründe, Hotels und Pensionen aufzusuchen. Gerade zur Messezeit sind viele Häuser jedoch total überteuert. Wir präsentieren günstige Geheimtipps.


Messe Düsseldorf und Köln



Messe Frankfurt



Messe Hannover



Messe Koblenz



Messe Leipzig



Messe München



Messe Nürnberg



Messe Pforzheim



Messe Stuttgart







Interessante Links aus aller Welt

Intelligenzsteigernd: Chinesische Forscher verpflanzen Menschen-Gen in Affen
Lebendigmachung: Forscher erzeugen Material, das Zeichen von Leben zeigt
Abzocke: Deutsche Regierung treibt Strompreise in die Höhe, was dem Fiskus irre zusätzliche Steuereinnahmen beschert
Forschung: Experiment rüttelt leicht am Zweiten Hauptsatz der Thermodynamik
Genanalyse: Ausgestorbene Menschenart im Erbgut von Afrikanern entdeckt
Umweltschutz: Der Selbstbetrug mit dem Bioplastik
Rätsel: Das Universum dehnt sich schneller aus als erwartet
Geheimnisse: Fünf Dinge, die vielfach über Leonardo da Vinci nicht bekannt sind
Rohstoffvorkommen: Lithium-Miene in Österreich lässt hoffen
Meilenstein: Fehleranfälligkeit von Quantencomputern könnte massiv gesenkt werden
Gasuntersuchung: Ist die Sättigung des Gegenstrahlungseffekts bei CO2 schon erreicht?
Korallen: Ein Sterben und erneutes Wachsen ist einem natürlichen Zyklus geschuldet
Interview: Die Energiewende muss neu gedacht werden
Schändung: Kinder werden für den „Global Marshall Plan“ missbraucht
Infraschall: Windräder machen die Menschen krank
Vahrenholt: Eine Industrienation schafft sich ab
Schweiz: Wurden Winddaten vor einer Abstimmung manipuliert?
Teuer: Die Rückbaukosten alter Windkraftanlagen im Blick
Unwahrheit: Dem 97-Prozent-Schwindel auf der Spur
Enteignung: Warum Venezuela in die Armut stürzte
Vorsicht: Falsche Propheten an allen Ecken und Enden
Entlarvt: Kiribati versinkt nicht im Meer
2020: Der Höhepunkt der Klima-Verrücktheit
Windkraftanlagen: Der Wahrheit ins Auge sehen
CO2-These: Alles nur geniale Propaganda






Geometrische Probleme rasch gelöst

Die Dreiecksberechnung zu beherrschen bedeutet, künftig viele Berechnungen geometrischer Art problemlos durchführen zu können. Wenn eine Gerade einen Kreis schneidet, ist es damit eine Leichtigkeit, die Lage der beiden Durchdringungspunkte zu ermitteln.


Bevor dieses Manuskript durchgearbeitet wird, empfiehlt sich die Lektüre des Artikels ›Berechnung der Schnittpunkte zwischen zwei Kreisen‹, der hier zu finden ist. Erst mit dieser Grundlage kann an dieser Stelle sinnvoll weitergelesen werden, da sonst wesentliche Dinge unbekannt bleiben. Beispielsweise wird dort umfassend erklärt, wie das schiefwinklige Dreieck handzuhaben ist und sich dessen Strecken und Winkel berechnen lassen.

Wie hinreichend bekannt, führen immer mehrere Wege ans Ziel. Das gilt nicht nur für Wanderer, sondern auch für Fans der Mathematik. Nicht alle Wege sind für jeden gleichermaßen geeignet, da für die Art und Weise, wie mathematische Probleme gelöst werden, jeder andere Vorlieben hat, wenn sich mehrere Lösungswege anbieten. Der folgende Lösungsweg zum Berechnen der beiden Schnittpunkt, die sich beim Durchdringen einer Geraden durch einen Kreis ergeben, ist daher nicht unbedingt jedermanns Favorit, doch kommt er den Fachleuten entgegen, die nicht am Gymnasium Mathe hatten und daher schwerpunktmäßig die Dreiecksberechnung zur Lösung geometrischer Aufgaben heranziehen.

Schritt 1:

Im ersten Schritt der Schnittpunktsberechnung ist es nötig, den Winkelwert Alpha 1 sowie die Strecke c der Hypotenuse des blauen Dreiecks zu ermitteln. Die Ankathete a (40 mm) sowie die Gegenkathete b (130 mm) sind bekannt und werden für diese Berechnungen herangezogen.

Die Länge der Strecke c, also der Geraden zwischen dem Null- und dem Kreismittelpunkt, ist wie folgt zu ermittel:

Schritt 2:

Im zweiten Schritt geht es darum, Strecken zu ermitteln, die zur Bildung eines schiefwinkligen Dreiecks führen, mit dem sich dann die Lage von Punkt P2 ermitteln lässt. Zur besseren Übersicht werden zunächst die Punkte aufgeführt , die bereits bekannt sind.

a2=16,782mm
b2=20mm

Strecke a3:
a3=40-a2
a3=40-16,782
a3=23,218mm

Strecke b3:
b3=130-b2
b3=130-20
b3=110mm

Strecke c3:

Schritt 3:

Im dritten Schritt wird der Winkel Alpha 3 berechnet. Die Berechnung dieses Winkels ist einfach, da hier nur der Winkel Alpha 2 vom bereits bekannten Winkel der Geraden abzuziehen ist.

Alpha 3 = 40° - Alpha 2
Alpha 3 = 40° - 11,9186°
Alpha 3 = 28,0814 Grad

Da nun drei Werte des schiefwinkligen Dreiecks bekannt sind, nämlich die Strecken b4 beziehungsweise c3 (136,0147mm) und a4 (R68mm) sowie der Winkel Alpha3, kann der Winkel Beta berechnet werden.

Da der Winkel Beta größer als 90 Grad ist, lautet die Formel:

Info: sin-1 (Arcussinus) ist die Umkehrfunktion der Sinusfunktion.

Der Winkel Gamma kann nun einfach durch die Subtraktion der beiden jetzt bekannten Winkel ›Alpha 3‹ sowie ›Beta‹ von der Winkelsumme 180 Grad ermittelt werden:

Gamma= 180-(Alpha 3 + Beta)
Gamma= 180-(28,0814 + 128,9)
Gamma= 23,0188 Grad

Nun ist es möglich, die Strecke C4 zu berechnen. Die Formel dazu lautet:

Wer mit dem Taschenrechner einen anderen Wert bekommen hat: Dies ist die Folge von Rundungsfehlern. Daher immer darauf achten, stets die volle Genauigkeit des Taschenrechners zu nutzen.

Schritt 4:

Nachdem nun die Strecke C4 bekannt ist, kann die Lage des Punktes P2 problemlos ermittelt werden. Dazu wird zunächst der Winkel Alpha 4 ermittelt.

Alpha 4 = 90 Grad – Alpha
Alpha 4 = 90° – 40°
Alpha 4 = 50°

Nachdem nun der Winkel dieses Dreiecks bekannt ist, können die beiden Strecken a5 und b5 ermittelt werden.

Mit diesen Werten wird es nun möglich, die Koordinaten des Punktes P2 zu bestimmen.

P2-X= b2+a5
P2-X= 20+43,2722
P2-X= 63,2722mm

P2-Y= a2+b5
P2-Y= 16,782+36,3097
P2-Y= 53,0917mm

Schritt 5:

Um Punkt P1 berechnen zu können, muss zunächst klar herausgestellt werden, dass das schiefwinklige Dreieck eine völlig neue Position eingenommen hat. Dies hat zur Folge, dass sich der Betrachter genau überlegen muss, wo
die Winkel Alpha, Beta und Gamma liegen. Entsprechend müssen auch die Strecken a, b und c festgelegt werden. Wird dies nicht beachtet, werden Rechenvorgänge zu falschen Ergebnissen führen.

Zunächst wird einmal festgehalten, was schon alles bekannt ist:

Strecke a6 = 68mm
Strecke b6=68mm
Winkel Alpha5=180°-128,9°=51,1°


Nun ist es noch nötig, die Winkel Beta2 und Gamma2 zu berechnen.

Winkel Beta 2:

Der Winkel wird ermittelt, indem die Umkehrfunktion des Sinus eingesetzt wird. Sin-1 0,7782=51,1°

Nachdem nun zwei Winkel im schiefwinkligen Dreieck bekannt sind und die Winkelsumme stets 180 Grad ergibt, kann der dritte, fehlende Winkel einfach berechnet werden:

Gamma 2 = 180 – (Beta 2 + Alpha 5)
Gamma 2 = 180° – (51,1° + 51,1°)
Gamma 2 = 77,8 Grad

Mit der Ermittlung von Winkel Gamma 2 ist der Weg frei für die Berechnung der Geraden c6, die zur Koordinatenermittlung des Punktes P1 noch fehlt.

Schritt 6:

Nachdem nun die Strecke c6 bekannt ist, können die Koordinaten des Punktes P1 ermittelt werden. Dazu wird zunächst die Strecke c7 ermittelt, die sich aus den Strecken c4 und c6 zusammensetzt.

Strecke c7:

c7=c4+c6
c7=56,4878+85,403
c7=141,8908mm

Strecke a7:

Strecke b7:

Mit diesen Werten wird es nun möglich, die Koordinaten des Punktes P1 zu bestimmen.

P1-X= b2+a7
P1-X= 20+108,6947
P1-X= 128,6947mm

P1-Y= a2+b7
P1-Y= 16,782+91,2056
P1-Y= 107,9876mm

Download:

Eine Excel-Tabelle zum Berechnen der Schnittpunkte zwischen Kreis und Gerade können Sie hier herunterladen [725 KB] .

 

War dieser Artikel für Sie hilfreich?

Bitte bewerten Sie diese Seite durch Klick auf die Symbole.

Zugriffe heute: 2 - gesamt: 7112.