Sie sind hier:

Anbieter

Besondere Welt

Bunte Welt

Events

Fachbücher

Firmenadressen

Gastkommentare

Gedanken zur Zeit

Goodies

Interviews

Kaufmannswissen

Messeunterkünfte

Stellenbörse

Technische Museen

Lernen

Blender

CAD_CAM

CNC-Technik

Elektronik

Mathematik

Office & mehr

Steuerungstechnik

Turbo CAD

Z88 (FEM)

VIP

Suchen nach:

Allgemein:

Startseite

Datenschutz

Impressum

Kontakt

Anzeige


Seit drei Generationen setzt die HEDELIUS Maschinenfabrik Maßstäbe in der Zerspanung. Ideenreichtum, Kundennähe und kompromisslose Qualität sind das Erfolgsrezept des Unternehmens.






Interessante Artikel früherer Ausgaben






Anzeige


HURCO Companies Inc. entwickelt und fertigt interaktive Computersteuerungen, Software sowie computergestützte Werkzeugmaschinen und –komponenten für die kundenbezogene Einzel- und Kleinserienfertigung.






Nähere Infos zu...

Archi Crypt Behringer Blum Boschert Diebold Emuge Euroimmun Evotech Halder Hedelius Horn Hurco Hydropneu Identsmart Index Klingelnberg Liebherr Mazak Mechoniks Raziol Rollon Supfina SW Tox Vogt Ultrasonics Völkel Weiss Rundschleiftechnik






Anzeige


Die Klingelnberg Gruppe ist weltweit führend in der Entwicklung und Fertigung von Maschinen zur Kegelrad- und Stirnradbearbeitung, Präzisionsmesszentren für Verzahnungen und rotationssymmetrische Bauteile sowie in der Fertigung hochpräziser Komponenten für die Antriebstechnik im Kundenauftrag.






Die Welt des Kaufmanns






Anzeige


Boschert ist ein konzernunabhängiger, mittelständischer Maschinenbauer mit Sitz in Deutschland. Ziel des Unternehmens ist es, die technische Kompetenz und Verantwortung in der eigenen Hand und auf höchstem Niveau zu halten. Die Maschinen werden im eigenen Hause geplant, projektiert und zusammengebaut.






Die VBA-Welt






Die 3D-Welt von Blender






Anzeige


Die VÖLKEL GmbH ist ein global agierender Hersteller von Gewindeschneidwerkzeugen und Gewindereparatur-Systemen. Produkte werden unter den Marken VÖLKEL und V-COIL vertrieben.






Anzeige


Das Kerngeschäft der Paul Horn GmbH ist die Bearbeitung zwischen zwei Flanken – Schwerpunkt Einstechen – sowie von weiteren, hochtechnologischen Anwendungen, verbunden mit Kundennähe, hoher Produktqualität, Beratungskompetenz und Lieferbereitschaft.






Die Welt der Geometrie







Die Welt der Elektronik







Die bunte Welt






Anzeige


Supfina Grieshaber besitzt langjährige Erfahrung auf dem Gebiet der Superfinish-Bearbeitung mit Stein- und Bandwerkzeugen. In Verbindung mit dem Wissen über vor- und nachgelagerte Prozesse bietet das Unternehmen praxisorientierte Lösungen.






Die besondere Welt






Anzeige


Leistungsstarke Sägemaschinen zur Metallbearbeitung sind das Markenzeichen der weltweit tätigen Behringer GmbH. Die Produktpalette umfasst Band-, Kreis- und Bügelsägen sowie Automatisierungskomponenten aus dem hauseigenen Stahlbau.






Die Welt der Goodies


Additive Fertigung


Automation


Blechbearbeitung


CAD


Entsorgung


Gewindeherstellung


Handwerkzeuge


Kennzeichnen


Lasertechnik


Logistik


Maschinenbau


Messtechnik


Schleiftechnik


Schweißtechnik


Sicherheitstechnik


Spannmittel


Steuerungen


Tribologie


Wasserstrahltechnik


Zahnradfertigung


Sonstiges






Die Welt der Events






Anzeige


Die Erwin Halder KG ist ein mittelständisches Unternehmen, das sich auf die Herstellung von Normalien, Modularen Vorrichtungssystemen und Spannmitteln, Handwerkzeugen und Luftfahrtprodukten spezialisiert hat. Gefertigt werden nicht nur Katalogartikel, sondern auch kundenspezifische Produkte.






Anzeige


Die RAZIOL Zibulla & Sohn GmbH steht seit 75 Jahren für Qualität in der Schmierungstechnik. Rollenbandöler, Sprühsysteme, Befettungssteuerungen, Dosiergeräte sowie leistungsstarke Umformöle gehören zu den in Eigenfertigung entwickelten und konstruierten Produkten.






Die Welt der Erfindungen

Hier bieten Erfinder Rechte oder Lizenzen für interessante Produkte an. Reinschauen lohnt sich!







Die Welt aus Professorensicht

An dieser Stelle wird sich in unregelmäßigen Zeitabständen ein anonym bleibender Professor äußern. Er wird intime Einblicke in ein absurdes Lehrsystem geben, das sich als leistungsfeindlich und ungerecht outet.







Anzeige


Vogt Ultrasonics ist seit 1983 ein Spezialist in der zerstörungsfreien Werkstoffprüfung. Das Unternehmen bietet hochleistungsfähige Ultraschallprüfsysteme und -geräte sowie alle zerstörungsfreien Prüfmethoden in Dienstleistung im eigene Prüfzentrum oder beim Kunden vor Ort.






Die Welt der Reisenden

Ob Urlaub, Messebesuch oder Reportage, es gibt viele Gründe, Hotels und Pensionen aufzusuchen. Gerade zur Messezeit sind viele Häuser jedoch total überteuert. Wir präsentieren günstige Geheimtipps.


Messe Düsseldorf und Köln



Messe Frankfurt



Messe Hannover



Messe Koblenz



Messe Leipzig



Messe München



Messe Nürnberg



Messe Pforzheim



Messe Stuttgart







Interessante Links aus aller Welt

Politikversagen: Bundesweites Dieselfahrverbot für Pendler eine Katastrophe
EU-Copyright-Reform: Verbraucherschützer enttäuscht
Innovation: Winzige Roboter sollen Motoren warten
Terrorbekämpfung: Richtlinien für Upload-Filter werden verschärft
DSGVO: Brave reicht Beschwerde gegen Google ein
Warnung: Ewige Sommerzeit führt zu massiven Problemen
Raumfahrt: Radioquellen als Positions-Referenz festgelegt
Sensation: Jupiter verfügt offenbar über flüssiges Wasser
Rüge: Bundesrechnungshof fordert ein Umdenken in Sachen EU-Subventionspolitik
Stickstoffoxid: Keine gesundheitlichen Gefahren bei Werten unter 900 Mikrogramm nachweisbar
Zensur: Klimaskeptiker werden nicht mehr ins Fernsehen eingeladen
Energiewende: Bundesrechnungshof stellt vernichtendes Urteil aus
Klartext: Offener Brief an die SPD
Sonne: Unser Gestirn war auch im August unternormal aktiv
Experte: Klimazyklen sind auf die Sonne zurückzuführen
Energiewende: 45 Prozent des Stromes müssen stets aus großen Kraftwerken kommen
Internet: WWW-Schöpfer will den Nutzern die Macht über Ihre Daten zurückgeben
Innovation: Software macht individuelle Strickwaren möglich
DSGVO: Facebook droht Milliardenstrafe
Betriebssystem: Microsoft stellt DOS-Quellcode zum Download bereit
Clever: Ein Zauberwürfel, der sich selbst in die korrekte Lage dreht






Per FEM ganz leicht Unsichtbares sichtbar machen

Z88Aurora ist bestens geeignet, um sich mit der Festigkeitslehre vertraut zu machen. Ob in der Ausbildung oder im Studium – jeder wird begeistert sein, wenn er von Hand berechnete Werte anhand der Ergebnisse von Z88Aurora prüfen kann. Sehr schön lassen sich zudem durch automatisch erzeugte Farben die Spannungen und Verschiebewerte erkennen, die bei einer Belastung von Stäben im Material entstehen. Auf diese Weise sind der Lernerfolg und das Verständnis für technische Problemstellungen optimal gegeben.


Wie bereits bekannt, ist Z88Aurora in Verbindung mit CAD-Software ein wertvolles Hilfsmittel für den Konstrukteur, um neue Konstruktionen auf optimale Auslegung zu testen. Doch auch in Sachen Ausbildung lässt sich das FEM-Programm optimal nutzen, schließlich wird das Fach ›Festigkeitslehre‹ auch in Berufsschulen für technische Berufe unterrichtet. Der Unterricht geht zwar nicht in die gleiche Tiefe, wie beim Ingenieursstudium, doch schadet es nicht, sich dem Thema mit Z88Aurora zu nähern, wenn Kräfte am Tragbalken wirken und die Auswirkung gesucht ist.

Damit der Einstieg gelingt, sollte zunächst die Berechnung einfacher Aufgaben auf dem Programm stehen. Insbesondere die Biegeberechnung von Stäben, macht Sinn, um später kompliziertere Dinge mathematisch korrekt handhaben zu können. Sinnvollerweise geschieht dies dann in der Regel alleine mit FEM-Software, wie eben Z88Aurora, da von Hand gerechnete Lösungen oft sehr viel Zeit in Anspruch nehmen.

Starten ohne zu stolpern

Um eine Biegeberechnung durchführen zu können, ist es zunächst nötig, ein 3D-Modell eines Stabes oder eines Trägers zu erstellen. Dazu genügt ein preiswertes 3D-CAD-System das in der Lage ist, Step- oder STL-Dateien auszugeben. TurboCAD von IMSI eignet sich für diesen Zweck optimal, da das Programm auch für Auszubildende finanziell erschwinglich ist. Ein Kurs zum Umgang mit diesem Programm ist bereits auf der Homepage von Welt der Fertigung zu finden.

Es ist beim Export in das Step-Format darauf zu achten, dass Z88Aurora ›.stp‹ als Extension erwartet. In TurboCAD wird serienmäßig jedoch ›.step‹ ausgegeben. Wer vergessen hat, dies vor dem Export zu ändern, kann auch nachträglich via Explorer die Extension anpassen. Nachdem nun das 3D-Modell im Step-Format vorliegt, kann es einfach in Z88Aurora importiert werden. Dazu ist vorher, wie bereits im vorangegangenen Kursbeispiel erläutert, eine Projektmappe anzulegen.

Für den Import einer Datei ist der Button ›Import‹ zu betätigen. Nachdem dieser betätigt wurde, öffnet sich ein Fenster, in dem aus einer Reihe von Importformaten gewählt werden kann. Im aktuellen Fall ist der Button ›Step-Datei‹ zu betätigen. Aus dem sich nun öffneten Fenster wird die gewünschte Datei ausgewählt und schließlich importiert.

Der in Z88Aurora importierte 3D-Körper muss nun mit einem FEM-Netz überzogen werden. Erst dieses Netz ermöglicht es, FEM-Berechnungen am Körper vorzunehmen. Für diesen Zweck wird zunächst der Button „Praeprozessor“ betätigt, woraufhin auf der rechten Bildschirmseite weitere Buttons, von denen zunächst nur der Tetraeder-Button interessant ist, erscheinen. Nachdem dieser betätigt wurde, können in einer Maske verschiedene Einstellungen für das Vernetzen vorgenommen werden.

Das vernetzen ist eigentlich keine schwierige Angelegenheit. Es hat sich jedoch herausgestellt, dass nicht jedes Teil mit jedem Vernetzer vernetzt werden kann. Im Fall des I-Träger wird die Vernetzung mit dem Netgen-Vernetzer abgebrochen. Erst die Vernetzung mit dem Tetgen-Vernetzer führte zum Erfolg. Im Fall einer Fehlermeldung lohnt es sich daher, verschiedene Einstellung durchzuprobieren, um zum Erfolg zu kommen.

Die Zahl im Feld ›Wert‹ beeinflusst die Dichte des Netzes, die um das Teil gelegt wird. Je kleiner die Zahl, desto schneller die Berechnung, doch gröber das Ergebnis. Als Faustregel gilt, dass große Bauteile gröbere Netze und kleine eher feine Netze erhalten sollten. Dies ist jedoch nicht immer passend, da auch große Bauteile durchaus feine Strukturen besitzen können, weshalb hier die Erfahrung gefragt ist, welcher Wert jeweils sinnvoll ist.

Nachdem alle Eingaben getätigt sind, wird der Button „Hinzufügen“ betätigt, der die Einstellungen in ein eigenes Feld übernimmt. Per Doppelklick kann die vorgeschlagene Bezeichnung geändert werden, um dem erzeugten Netz einen passenden Namen zu geben. Nachdem das Netz aufgezogen wurde, kann es mit dem Button „Oberflächennetz“ sichtbar gemacht werden.

Picking

Nun beginnt die eigentliche Arbeit in Sachen FEM. Mit dem sogenannten „Picking“ werden nun diejenigen Netzpunkte selektiert, denen man bestimmte Eigenschaften etwa hinsichtlich einwirkender Kräfte zuweisen möchte. Im Fall der Berechnung der Biegebelastung eines Rundstabes oder eines Trägers gilt es, auf einer Seite eine sogenannte Festhaltung aufzubringen, während am anderen Ende die Kraft wirkt.

Z88Aurora hat dazu wohlüberlegte Funktionen, mit denen diese Arbeit relativ rasch erledigt ist. Es genügt zum Beispiel, lediglich einen einzigen Picking-Punkt an der Kante zu selektieren, wo später die Kraft wirken soll, da mit der Funktion „Kante“ alle restlichen Punkte angewählt werden können, die auf dieser Kante liegen, was sehr viel Zeit spart. In gleicher Weise kann man Zeit beim Anwählen von Flächen sparen.

Dazu genügt es auf der gegenüberliegenden Seite des Stabes einen einzigen Punkt an der Stirnseite zu selektieren und danach mit dem Button „Fläche“ alle Picking-Punkte auszuwählen, die sich auf der Fläche befinden. Zum Picken ist übrigens die STRG-Taste gedrückt zu halten, während mit der linken Maustaste ein Punkt angeklickt wird.

Im Fall des Biegetestes sind zwei Flächen und eine Kante auszuwählen. Dies wären eine „Festhaltung“ und eine „Last“. Die Festhaltung ist eine Flächen, während die Last eine Kante ist. Diese werden wir folgt erstellt: Sobald die Fläche beziehungsweise Kante erzeugt ist, wird jedes Mal der Button „Hinzufügen“ betätigt. Die ausgewählten Punkte werden im Textfeld von „Markierungen“ ausgewiesen. Ihnen sollte hier ein aussagekräftiger Name gegeben werden, um sie jederzeit zuordnen zu können. Zum Beispiel „Stirnseite“ und „Kante für Last“.

Nun gibt es noch den Button „Set hinzufügen“. Damit ist es möglich, Picking-Punkte beziehungsweise ganze Flächen die zusammengehören, zu einer Einheit zu verbinden. Dies ist beispielsweise sinnvoll bei Festhaltungen, da ein Teil durchaus an mehreren Punkten befestigt sein kann und die FEM-Berechnung dies berücksichtigen muss, um die Last korrekt zu berechnen.

Im vorliegenden Fall genügt es, die einzelnen Flächen beziehungsweise die Kante zu selektieren und als jeweils eigenes Set anzulegen. Sinnvollerweise sollte auch hier der Name ergänzt werden, damit eine leichte Zuordnung möglich wird.

Damit die Durchbiegung korrekt berechnet wird, muss natürlich festgelegt werden, aus welchem Material der Stab besteht, schließlich verformt sich Kunststoff viel leichter, als etwa Stahl. In der mitgelieferten Materialdatenbank sind bereits viele gängige Werkstoffe enthalten. Es kann jedoch problemlos eigenes Material erzeugt werden, wenn dies nötig wird. Zur Demonstration wird die Stahlsorte S235JR verwendet.

Randbedingungen

Nun beginnt die spannende Arbeit der Randbedingungen. Hier ist genaues Arbeiten wichtig, da die Ergebnisse der Berechnung auf einer akkuraten Vorarbeit fußen. Da der Stab nur auf einer Seite fest ist, wird die Festhaltung auch nur auf einer Seite angebracht. Dazu wird das Set „Festhaltung“ aktiviert und die drei Richtungen X, Y und Z mit einer Verschiebung vom Wert 0 beaufschlagt.

Alle zur Fläche „Festhaltung“ gehörenden Punkte werden also niemals bewegt. Anders das Set „Last“. Hier wird im Fall des Rundstabs eine Linienlast in Y-Richtung mit einer Kraft von 200N aufgebracht. Der I-Träger wird in X-Richtung mit 10000N beaufschlagt. Nachdem nun diese Randbedingungen festgelegt sind, kann endlich daran gedacht werden, die Berechnung zu starten. Dazu wird der Solver „Paradiso“ ausgewählt und der Button „Berechnung starten“ betätigt.

Ergebnis

Schon nach kurzer Rechenzeit liegt das Ergebnis vor, wobei die Berechnung beim I-Träger ein wenig länger dauert, weshalb ein schneller Rechner zum Einsatz kommen sollte. Zur Betrachtung des Ergebnisses genügt ein Druck auf den Button „Postprozessor“. Hier hat man wiederum mehrere Möglichkeiten, das Ergebnis zu analysieren. Zunächst am interessantesten sind sicher die Gesamtverschiebung sowie die Darstellung des sich verformenden Teils. Zu diesem Zweck genügt es, den Radio-Button „Verformt“ und die Auswahl „Gesamtverschiebung“ zu aktivieren beziehungsweise auszuwählen. Durch Verschieben des Schiebers im Fenster „Skalierung“ kann eine Animation des sich verformenden Stabes betrachtet werden.

Auf der linken Seite des Bildschirms befindet eine Tabelle, aus der ersichtlich ist, wie groß die Verschiebung des Stabes an den jeweiligen Farbbereichen ist. In diesem Fall ist an den blauen Stellen die Verschiebung nur gering, während die rot markierten Bereiche deutliche Verschiebungen aufweisen. Wie im Fall des Rundstabs festgestellt werden kann, ist die von Hand berechnet Verschiebung von 40,4 Millimeter um 6,2 Millimeter größer, als die von Z88Aurora ermittelte Verschiebung, die 34,2 Millimeter beträgt. Wesentlich harmonischer ist das Ergebnis beim I-Träger. Hier beträgt das von Hand errechnete Ergebnis 7.47 Millimeter, während Z88Aurora einen Wert von 7.29 bis 8.02 Millimeter errechnet hat.

Die Verformung der Bauteile kann durch Verschieben des Schiebers im Feld ›Skalierung‹ simuliert werden. Dabei ist darauf zu achten, welcher Skalierungsfaktor aktiv ist. Nur dann, wenn der Schieber den Faktor ›1‹ besitzt, wird die tatsächliche maximale Verschiebung angezeigt. Dies kann anhand des I-Trägers leicht nachvollzogen werden, da der Skalierungswert ›37‹ einen Träger zeigt, der etwa um 270 Millimeter verbogen ist. Der Träger hat eine Höhe von 260 Millimeter. Wenn nun mit dem Radio-Button ›Beides‹ beide Zustände des Träger eingeblendet werden, so kann auch visuell der Sachverhalt festgestellt werden. Nur die Skalierungs-Einstellung ›1‹ zeigt die maximale Verschiebung von etwa 7.5 Millimeter im Original an.

Eine FEM-Software kann aber noch viel mehr. Wenn die Funktion „Spannungen in den Eckknoten“ aktiviert wird, kann sehr schön betrachtet werden, dass sich am Befestigungspunkt des Stabes die größten Spannungen beim Verbiegen aufbauen. Diese bauen sich mit zunehmendem Abstand zum Befestigungspunkt ab und sind am anderen Ende, an dem die Kraft F wirkt, am geringsten.

Zum Schluss noch ein praktischer Hinweis: sollten die Punkte, wie etwa die Gausspunkte zu groß sein, lassen sich diese mit den jeweiligen Buttons verkleinern, damit eine problemlose Betrachtung des Stabes möglich wird.

Ergebnis I-Träger

Z88Aurora hat eine Verschiebung von 8.02 mm errechnet. Von Hand lautet das Ergebnis: 7.46 mm.

Ergebnis Rundstab

Download

Diesen Artikel können Sie hier im PDF-Format [1.732 KB] herunterladen.

Ein Skript zum Thema finden Sie hier im PDF-Format [2.646 KB] .

Für eigene Versuche können Sie folgende Bauteile im Step-Format herunterladen:
I-Trager D260 3000mm lang [52 KB] ;
Rundstab D20 1000mm lang [6 KB]

 

War dieser Artikel für Sie hilfreich?

Bitte bewerten Sie diese Seite durch Klick auf die Symbole.

Zugriffe heute: 3 - gesamt: 5318.