Merkle&Partner: Virtuelles Prototyping
Simulation komplexer Materialstrukturen
Moderne Kunststoff-Verbundwerkstoffe, wie kurzfaserverstärkte Kunststoffe, sind Hochleistungsmaterialien, die in weiten Teilen der Produktentwicklung herkömmliche Werkstoffe wie Stahl, Blech, Aluminium etc. ersetzen. In der Produktentwicklung lassen sich die Eigenschaften dieser modernen Materialien oft nur näherungsweise definieren. Mittels klar definierter Simulationsmethoden bei Merkle & Partner wird neben der Werkzeugauslegung insbesondere die Bauteilsimulation auf Basis moderner Kunststoff-Verbundwerkstoffe schon in der Phase des Prototypings sicher bestimmt.
Immer häufiger werden Bauteile durch Kunststoffe substituiert. Da den Kunststoffen oft Kurzglasfasern mit einer Länge von unter einem Millimeter zugesetzt werden, lassen sich damit auch gewünschte Steifigkeiten des Materials erreichen. Für das Prototyping und Testing eines Bauteils stellen diese beigesetzten Fasern einen gewissen Willkürfaktor dar, da das Material längs und quer zu einer Faser unterschiedliche Materialeigenschaften besitzt.
Zwar stehen Kennwerte der Materialhersteller zur Verfügung. Diese stammen in der Regel aber aus spritzgegossenen Zugproben. Bei diesen liegen die Fasern im Messbereich relativ gleichmäßig. Werden Materialkennwerte mit dieser isotropen, also mit nach allen Richtungen hin gleichen physikalischen Eigenschaften, bei Berechnungen verwendet, wird das Material wesentlich überschätzt. Für realitätsgetreue Simulationen unpassend.
Vorbereitende Simulation
Daher bietet Merkle & Partner mittels einer durchdachten Simulationsberechnung nun auch für Hochleistungsbauteile aus Kunststoff-Verbundwerkstoffen eine realitätsnahe, zeit- wie kostensparende Berechnungsmethode. Die Basis hierfür stellt eine Spritzgusssimulation des zu fertigenden Bauteils dar. Hierdurch werden die Faserorientierungen im Bauteil ermittelt. Diese werden anschließend auf das strukturmechanische Berechnungsmodell gemappt. Damit lassen sich an jeder Stelle des Bauteils realitätsgetreue, anisotrope Effekte (aufgrund der unterschiedlichen Faserausrichtung nicht nach allen Richtungen hin gleiches Materialverhalten) simulieren.
Zeitliche und finanzielle Vorteile
„Die Simulationsberechnung für komplexe Verbundwerkstoffe ist für die Konstruktion wie auch das Testing eine enorme zeitliche wie wirtschaftliche Unterstützung“ so Stefan Merkle, Geschäftsführer der Merkle & Partner. „Damit können wir schon in einer sehr frühen Phase der Entwicklung sehen, wie sich Geometrien und Materialien verhalten und damit sehr gezielt positiv Einfluss nehmen. Vor allem bei modernen Verbundwerkstoffen, bei denen oft noch Berechnungsdaten und Erfahrungswerte fehlen.“
Da für die Werkzeugauslegung ohnehin eine Spritzgusssimulation durchgeführt wird, fällt die Berechnung der Faserorientierung quasi als Nebenprodukt an. Damit erhält der Konstrukteur neben der optimalen Werkzeugauslegung parallel essentielle Daten für die optimale Auslegung der Bauteile. Im Vergleich zu herkömmlichen Simulationen fordert dies nach Merkle & Partner keinen wesentlichen Mehraufwand bei gleichzeitig wesentlich präziserem Ergebnis der Simulation.
Durch Spritzgusssimulation und strukturmechanische Simulation aus einer Hand wird eine tiefere Sichtweise hinsichtlich der Lage der Bindenähte, der Fließrichtung und damit der Faserorientierung ermöglicht. Den Spritzgießer interessiert, ob die Form gefüllt wird, wohingegen der Strukturmechaniker wissen möchte, ob die Fasern auch im Kraftfluss liegen und wie das Festigkeitsverhalten ist.
Beweisführung durch Real-Testing
Dass diese Simulationsberechnung bereits in der Realität Stand hält, konnte Merkle & Partner in zahlreichen Berechnungen verifizieren. Am Beispiel einer Druckplatte für Rohrdurchführungen an Gebäuden aus einem Polyamid-Glasfaser-Verbundwerkstoff (PA66-GF35) konnte die Stelle des Initialbruchs wie auch der Auslastungsgrad des viertelsymmetrischen Bauteils eindeutig berechnet werden. Die gleiche Berechnung anhand isotroper Daten, ohne vorherige Spritzgusssimulation, ließ weder die genaue Ermittlung der Stelle des Initialbruchs, noch die des realen Auslastungsgrads zu. Die Berechnungen der Merkle & Partner hielten dem Real-Test zu 100% stand.
Mehr Informationen zu Merkle & Partner:
MERKLE & PARTNER GbR | |
Ingenieurbüro für Simulation & Entwicklung | |
Friedrichstraße 1 | |
89518 Heidenheim | |
Tel.: +49 (0)7321 9343-0 | |
Fax: +49 (0)7321 9343-20 | |
E-Mail: info@merkle-partner.de | |
www.merkle-partner.de |
War dieser Artikel für Sie hilfreich?
Bitte bewerten Sie diese Seite durch Klick auf die Symbole.
Zugriffe heute: 3 - gesamt: 3898.