Fertigungsdaten optimal nutzen
Prozesstransparenz ist inklusive
Condition Monitoring Systeme (CMS) spüren im Produktionsprozess Veränderungen und Anomalien auf: Sie diagnostizieren frühzeitig sich anbahnende Schäden, erkennen Qualitätsabweichungen, überwachen die Stabilität eines Fertigungsprozesses und gewährleisten eine durchgängige Qualitätskontrolle auf allen Stufen der Produktion und Wertschöpfung. Greifsysteme und Spannmittel gewinnen in diesem Kontext aufgrund ihrer Position closest-to-the-part rasant an Bedeutung.
Die Forderung von Anwendern nach höherer Produktivität, Anlagenverfügbarkeit und Prozesssicherheit hat Auswirkungen auf die in der modernen Produktion eingesetzten Maschinen und Anlagen: Immer häufiger wird die Möglichkeit der permanenten Zustandsüberwachung zu einem Schlüsselkriterium bei der Komponentenauswahl. Die Analyse der Produktions- und Qualitätsdaten im Takt der Fertigung bietet das Potenzial zu signifikanten Kosteneinsparungen, einer höheren Betriebseffizienz und einer verbesserten Produktionsqualität.
Vor allem die höhere Verfügbarkeit von Anlagen sowie eine Just-in-Time-Maintenance verbessern nachweislich die Betriebseffizienz. Im Idealfall lassen sich ungeplante Anlagenstillstände sogar gänzlich eliminieren. Die Produktqualität wiederum lässt sich steigern, indem die Maschinenabnutzungsdaten in die Prozessteuerungen einfließen und Abweichungen von der Standardqualität vorhersehbar werden, sodass rechtzeitig gegengesteuert werden kann. Schon heute erzeugen Maschinen und Anlagen, smarte Werkzeuge sowie Komponenten in den Werkshallen fertigender Unternehmen enorme Datenmengen.
Tatsächlich jedoch wird nur der kleinste Teil davon genutzt, Schätzungen gehen von lediglich rund fünf Prozent aus. Den von Sensoren erfassten Werten wurde bislang kaum Bedeutung beigemessen, allenfalls im Schadensfall oder bei der Fehlersuche. Indem die bereits vorhandenen Daten umfassend, systematisch und vor allem in Echtzeit genutzt werden, lassen sich Smart-Manufacturing-Szenarien realisieren, die einen erheblichen Benefit versprechen.
Zugleich ist mit dem Grad der Vernetzung und Digitalisierung ein rasanter Anstieg der Datenmenge verbunden, sodass die Gefahr besteht, dass die Verbindungen in die Cloud-Rechenzentren die rasch anwachsenden, immensen Datenströme nicht bewältigen können und Ausfälle sowie hohe Latenzzeiten drohen.
Gezielte Auswahl
Im Mittelpunkt aktueller Entwicklungsprojekte steht daher ein grundlegend neues Datenverständnis: Es geht nicht mehr darum, Daten wie bisher einfach nur zu sammeln, sondern diese bereits vor Ort zu analysieren und in werthaltige Informationen zu überführen. Im Zentrum steht die Frage, wie sich Big Data in Smart Data veredeln lassen. Gefordert sind beispielsweise aufbereitete Information, ob eine Anlage sauber läuft, im Idealfall verknüpft mit entsprechenden Handlungsempfehlungen.
So können Qualitätsmerkmale von Bauteilen während des Handlings geprüft und IO-/NIO-Entscheidungen unmittelbar im Greifer erfolgen. Die im Greifer erfassten Daten werden unmittelbar in der Komponente in Echtzeit vorverarbeitet und analysiert, um entsprechende Reaktionen auszulösen. Damit wird das zu übertragende Datenvolumen auf das Nötigste reduziert, sprich eine zum Teil verwirrende Datenfülle wird in aussagefähige Kennzahlen oder Key Performance Indicators (KPI) kanalisiert.
Die wichtigsten KPI sind neben der klassischen Ausfallstatistik die Fähigkeitskennwerte der Prozesse (Cp) aus der statistischen Prozessanalyse und die Gesamtanlagennutzungseffizienz. Diese misst drei Leistungsdaten und führt sie multiplikativ zu einer ganzheitlich ermittelten Produktivitätskennzahl, der Gesamtanlagennutzungseffizienz oder Overall Equipment Effectiveness (OEE) zusammen. Smarte Handhabungsmodule schaffen auf einfache Art und Weise die Voraussetzungen für eine Vollintegration von Produktionsanlagen im Fertigungsumfeld und eröffnen deren Anbindung an Cloud-basierte Ökosysteme, um die Gesamtanlageneffektivität OEE, die Fehlerstatistik (MTBF, MTTR) sowie die mittelfristige Prozessstabilität über die ermittelten Fähigkeitskennwerte zu ermitteln.
Sofortige Datenauswertung
Eine derartige Schlüsselkomponente ist der Schunk EGL-Parallelgreifer, ein smartes Standardgreifmodul mit serienmäßig integrierten Funktionen, einer zertifizierten Profinet-Schnittstelle und integrierter Elektronik mit variablem Hub und einer zwischen 50 N und 600 N einstellbaren Greifkraft. Als Inline-Messsystem nutzt der intelligente Greifer beim sogenannten „Smart Gripping“ seine exponierte Position unmittelbar am Werkstück zur Datengewinnung und wertet diese mithilfe der in den Greifer integrierten Edge-Technologie umgehend aus.
Jeder einzelne Prozessschritt kann detailliert überwacht und beispielsweise an die Anlagensteuerung, an das übergeordnete ERP-System, aber auch an Analyse-Datenbanken und Cloud-Lösungen weitergegeben werden. Auf diese Weise ist der smarte Greifer in der Lage, systematisch Informationen über das gegriffene Bauteil, den Prozess und auch über die Komponenten zu erfassen, zu verarbeiten und entsprechende Reaktionen auszuführen. Er ermöglicht damit eine Closed-Loop Qualitätskontrolle und die unmittelbare Überwachung des Produktionsprozesses im Fertigungstakt.
Vor allem die fortlaufende Echtzeit-Bestimmung der langfristigen Prozessfähigkeit Cpk zur proaktiven Trenderkennung und Fehlerdiagnose hat sich mit dem Greifer bewährt. Eingeleitete Regelkorrekturen greifen bereits vor dem Erreichen der Spezifikationsgrenzen und erlauben eine erheblich stabilere Prozessführung. Im Rahmen einer Sensorfusion können mehrere Sensoren parallel eingesetzt und deren Messwerte verknüpfend analysiert werden, um aktuelle Systemzustände der Greifer sowie der Zugriffssituation zu bewerten.
So ist es möglich, Greifobjekte zu unterscheiden, aber auch Störungen im Produktionsablauf zu erkennen, beispielsweise differierende Rohstoffqualitäten, verschleißende Werkzeuge, Toleranzabweichungen oder Materialengpässe. Über die Prozessanalyse in Echtzeit ist darüber hinaus eine Trendbewertung und deren umgehende Einbeziehung in die Qualitätsregelung des Fertigungsflusses möglich, etwa auf der Basis von Fähigkeitskennwerten. Über Korrelationsanalysen gelingt es, selbst komplexe Zusammenhänge schneller zu erfassen und kompliziertere Fehlerbilder zu eliminieren.
Künftig, so die Pläne von Schunk, sollen sich Aufgabenstellungen für die Steuerung der gesamten kinematischen Kette, bestehend aus Roboter und Greifer, sowie das Monitoring ihrer Funktion automatisieren lassen, ohne dass Schritt für Schritt programmiert oder Schwellenwerte gesetzt und fortlaufend angepasst werden müssen. Der Schlüssel für dieses autonome Greifen ist der Einsatz von Methoden der Künstlichen Intelligenz (KI) sowie die Nutzung unterschiedlicher Sensoren. So werden in einer Pilotanwendung Methoden kognitiver Intelligenz eingesetzt, um zufällig angeordnete Teile über eine Kamera zu identifizieren und sie dann autonom aus einer Transportbox zu greifen und ihrem Bearbeitungsprozess zuzuführen.
Gleichzeitig werden Abweichungen vom üblichen Geschehen - so genannte „Anomalien“ - und Trends, wie beispielsweise das Driften relevanter Prozessparameter, gelernt und schärfen die im Greifer realisierten Diagnoseinstrumente, ohne dass es zu Betriebsunterbrechungen oder einem überbordenden Trainingsbedarf bei der Systemeinrichtung kommt. Der Greifer, so das Ziel, wird also nicht nur greifen, sondern die komplette Greifplanung übernehmen, den Gesamtprozess sensorisch überwachen und fortlaufend analysieren. Hierbei ergänzen sich Edge- und Cloud-Computing auf vorteilhafte Weise gegenseitig.
Download
Diesen Artikel finden Sie auch in Heft 6/2020 auf Seite 90. Zum besagten Heft führt ein Klick auf den nachfolgenden Button!
Mehr Informationen zur SCHUNK GmbH & Co. KG:
SCHUNK GmbH & Co. KG | |
Bahnhofstr. 106 - 134 | |
74348 Lauffen/Neckar | |
Tel. +49-7133-103-0 | |
Fax +49-7133-103-2399 | |
E-Mail: info@de.schunk.com | |
www.schunk.de |
War dieser Artikel für Sie hilfreich?
Bitte bewerten Sie diese Seite durch Klick auf die Symbole.
Zugriffe heute: 3 - gesamt: 3175.